我国人工智能技术优势与产业化发展态势
人工智能技术的发展和产业化应用正推动着各行各业的变革。基础技术如机器学习、深度学习、自然语言处理、计算机视觉,以及云计算等,是人工智能产业化的核心,我国在图像识别、语音识别等技术领域达到了国际领先水平。随着人工智能技术的不断发展,政府、企业和研究机构正在共同努力,将人工智能与其他领域结合起来,以实现更大的整体效益。中国已准备好释放“人工智能+”领域的巨大潜力。人工智能在制造业、医疗保健、金融和教育等行业发挥的作用越来越深入广泛,正在形成新质生产力,并改变未来的商业模式和创造新的产业链。
关键词:人工智能 计算机视觉 自然语言处理 大模型
【中图分类号】TP-9 【文献标识码】A
近年来,人工智能(AI)技术的发展速度令人瞩目。从自主驾驶汽车到医疗诊断、从虚拟助手到金融预测,人工智能已经渗透到了生产生活的各个方面。这种快速增长和迅猛发展不仅改变了我们与技术互动的方式,还为各行各业带来了新的机遇和挑战。在推动技术创新和产业变革方面,人工智能都发挥着至关重要的作用。例如,在医疗保健领域,人工智能被用于分析大数据、识别模式并作出预测,从而提高疾病诊断和治疗的准确性。在金融领域,人工智能被用于风险评估、投资决策和欺诈检测等任务,甚至直接参与量化投资获益。
我国高度重视人工智能技术发展和应用,近年来出台《新一代人工智能发展规划》(2017年7月)、《关于促进人工智能和实体经济深度融合的指导意见》(2019年3月)、《关于加快场景创新以人工智能高水平应用促进经济高质量发展的指导意见》(2022年8月)、《生成式人工智能服务管理暂行办法》(2023年7月)等文件,推动人工智能技术的发展和产业化应用。2024年《政府工作报告》提出开展“人工智能+”行动计划,该计划旨在将人工智能与其他技术,例如物联网、大数据和云计算相结合,赋能千行百业,创造出更具创新力的新应用和新领域。
人工智能关键技术及其价值
在全球范围内,人工智能技术的发展正推动着各行各业的变革。基础技术如机器学习、深度学习、自然语言处理、计算机视觉,以及云计算等,是支持人工智能产业化的核心。这些技术不仅提高了自动化水平,还为数据分析、决策支持和用户交互提供了更加精确和高效的方法。具体来说,深度学习技术通过模仿人脑处理和分析大量数据的方式,已成为提高图像和语音识别准确性的关键技术。自然语言处理使计算机能够理解和生成人类语言,广泛应用于聊天机器人、翻译系统和情感分析中。计算机视觉技术则在自动驾驶汽车、医疗影像分析及监控系统中展示了其强大的应用潜力。同时,云计算已经成为支撑人工智能技术发展的基础设施和重要平台。
我国在图像识别、语音识别等人工智能技术领域达到了国际领先水平。这部分得益于深度学习技术的广泛应用。例如,百度的深度学习平台PaddlePaddle,为开发者提供了强大的工具,以推动机器学习算法的创新和实际应用。各级政府对人工智能的大力支持和资金投入,使得相关基础技术得到了快速发展,并在智能制造、智慧城市建设和健康医疗等多个领域得到了实际应用。例如,在智能制造领域,通过机器学习和数据分析技术,工厂能够实现更高效的生产线管理和质量控制;在健康医疗领域,计算机视觉技术被用于辅助诊断,提高诊断的准确率和效率,等等。
接下来简要介绍当前大家关心的关键人工智能技术及其价值。
变换器(Transformer)。变换器是一种深度学习模型,由谷歌(Google)在2017年提出,用于处理序列到序列(sequence-to-sequence)的任务,如机器翻译。Transformer 架构及其变体已经成为大型语言模型的基石,它们在自然语言处理(NLP)领域的应用非常广泛,从机器翻译到文本摘要,再到问答系统等。这些模型的成功展示了Transformer 架构在处理复杂语言任务方面的强大能力。
微调(Fine-tune)。微调是机器学习中的一种训练技巧,特别是在自然语言处理(NLP)中,它涉及将一个在大型数据集上预训练的模型应用到一个更小的、针对特定任务的数据集上进行再训练。微调是大型语言模型应用到实际问题中的关键步骤,它使得这些模型能够在各种特定的自然语言处理任务中发挥作用。当下已有许多开源的大模型,通过微调,研究者和开发者能够利用预训练模型的强大能力,为特定的应用场景定制模型。因此,微调技术对于产业界的应用具有非常重大的意义。
模型压缩(Model Compression)。量化是深度学习模型部署时实现模型压缩的一种技术,它通过减少模型权重和激活值的表示精度来减小模型的大小和计算需求。量化是大型语言模型部署到资源受限设备上的关键技术之一。通过量化,这些模型可以在不牺牲太多性能的情况下,以更小、更快、更节能的形式运行。这对于推动大型语言模型在实际应用中的广泛使用具有重要意义。
检索-生成(RAG)。检索-生成(RAG)是一种结合了信息检索(Retrieval)和文本生成(Generation)的深度学习模型,用于处理需要大量背景知识的任务,如开放域问答(Open-Domain Question Answering)。RAG是一种创新的方法,它将检索系统的广度和生成模型的灵活性结合起来,以解决复杂的自然语言处理任务。通过检索相关信息并利用这些信息生成答案,RAG能够提供更准确和详细的输出,尤其是在需要广泛背景知识的场景中。
我国的人工智能产业化发展趋势
近年来,我国的人工智能产业取得了长足的进步,形成了独特的产业格局。在这一格局中,不仅有众多科技巨头如百度、阿里巴巴、腾讯等积极布局人工智能领域,更有许多初创企业、高校和科研机构参与其中,共同推动人工智能技术的创新与发展。
首先,科技巨头在人工智能领域的影响力不容忽视。百度凭借其深厚的搜索技术积累,在人工智能领域取得了显著的成果,其语音识别、自然语言处理、图像识别等技术在业界处于领先地位。阿里巴巴在云计算、大数据等领域发力,为人工智能技术的应用提供了强大的基础设施支持。腾讯则利用其在社交、游戏等领域的优势,将人工智能技术应用于智能客服、智能推荐等领域,取得了良好的市场效果。
其次,初创企业、高校和科研机构在我国人工智能产业中也发挥着重要作用。这些机构通常具有灵活的创新机制和高度的研究热情,能够迅速捕捉人工智能领域的前沿技术动态,并将其转化为实际产品或服务。例如,一些初创企业专注于人工智能芯片的研发,试图打破国外厂商在高端芯片市场的垄断;一些高校和科研机构致力于人工智能基础理论的研究,为人工智能技术的长远发展提供理论支撑。
在创新成果和成就方面,我国人工智能产业也取得了显著的成绩。例如,在具身智能领域,我国新能源汽车的自动驾驶水平已经实现了与国际先进水平的并跑甚至领跑;在自然语言处理领域,我国的研究团队在大语言模型、机器翻译、文本生成等方面也取得了重要突破;在生成式人工智能领域,我国的研究人员在图像生成、视频生成等方面也取得了显著成果。
具身智能产业化趋势
随着人工智能技术的飞速发展,具身智能(Embodied Intelligence)作为人工智能与物理世界交互的重要领域,正在成为科技创新和产业变革的重要力量。具身智能强调智能体与环境之间的实时互动和感知,通过人工智能技术实现智能体在复杂环境中的自主决策和行动。
人工智能在具身智能中的应用主要体现在环境感知与理解、自主决策与行动、交互与沟通等方面。具体而言,在环境感知与理解方面,人工智能技术通过传感器、摄像头等设备收集环境信息,利用深度学习、计算机视觉等技术对环境进行感知和理解。智能体可以根据这些信息实时调整自身的行为和决策,以适应复杂多变的环境。在自主决策与行动方面,人工智能技术使智能体具备自主决策和行动的能力。通过机器学习、强化学习等技术,智能体可以学习并优化自身的行为策略,实现自主导航、避障、执行任务等。在交互与沟通方面,人工智能技术为智能体提供了与人类或其他智能体进行交互和沟通的能力。智能体可以通过自然语言处理、语音识别等技术理解人类指令和需求,并通过语音、文字、动作等方式进行反馈和回应。
当前随着消费者对于智能化、个性化产品和服务的需求日益增长,具身智能行业得到了快速发展。同时,随着技术的不断成熟和应用场景的拓展,具身智能产品正在逐步渗透到人们的日常生活中,改变着人们的生活方式和工作模式。常见的具身智能应用包括:
智能机器人。智能机器人是具身智能的重要应用之一,通过集成人工智能技术,智能机器人可以实现自主导航、语音交互、人脸识别等功能,为家庭、医疗、工业等领域提供智能化服务。
自动驾驶汽车。自动驾驶汽车是人工智能在交通领域的创新应用,通过感知周围环境、规划行驶路径、控制车辆运动等功能,自动驾驶汽车可以实现安全、高效的自动驾驶,提高交通效率和安全性。